Performance Improvement of Ca-Alginate Bead Cross- Linked Laccase from Trametes versicolor IBL-04
نویسندگان
چکیده
Extracellular laccase was produced by Trametes versicolor IBL-04 using corn cobs as a substrate under pre-optimized culture conditions. A 64kDa laccase enzyme was purified and immobilized on calcium alginate beads using glutaraldehyde as a cross-linking reagent. Maximum enzyme immobilization efficiency (89%) was observed with 2-mm calcium-alginate beads that were developed using 4% (w/v) sodium alginate in 2% (w/v) calcium chloride solution. Immobilization of laccase enhanced the optimum temperature but caused an acidic shift in the optimum pH of the enzyme. The immobilized enzyme showed optimum activity at pH 3.0 and 60 °C as compared to pH 4.5 and 45 °C for free laccase. The kinetic constants Km and Vmax of laccase were significantly altered by immobilization. The affinity of enzyme toward its substrate increased (Km decreased), leading to enhanced catalytic efficiency (Vmax increased). Scanning electron microscopy (SEM) was performed to characterize the free and enzyme-bound immobilization matrix. Free and immobilized enzymes also were used for decolorization of the Reactive T Blue dye (030905 GWF) for three days. The free and immobilized laccases decolorized the dye by 65% and 92%, respectively, in 72 h. The immobilized enzyme retained 68% of its original activity after three cycles of repeated reuse for dye decolorization, indicating the usefulness of immobilized laccase in repeated industrial batch operations.
منابع مشابه
KINETIC CHARACTERIZATION OF PURIFIED LACCASE PRODUCED FROM Trametes versicolor IBL-04 IN SOLID STATE BIO-PROCESSING OF CORNCOBS
A locally isolated white rot fungal strain Trametes versicolor IBL-04 produced high laccase activities in solid state bio-processing of corn cobs. Addition of glucose and yeast extract (C: N ratio; 25:1) enhanced laccase synthesis. Addition of Tween-80 and CuSO4 enhanced laccase production to 1012 U/mL under optimized process conditions. Laccase was further purified to 2.89-fold (specific activ...
متن کاملOPTIMIZATION OF PHYSICAL AND NUTRITIONAL FACTORS FOR SYNTHESIS OF LIGNIN DEGRADING ENZYMES BY A NOVEL STRAIN OF Trametes versicolor
This paper reports the production of ligninase enzymes by a new strain of Trametes versicolor IBL-04 producing a novel pattern of ligninolytic enzymes with highest MnP activities followed by LiP and laccase. In previous studies Trametes versicolor has been reported to produce higher activities of MnP, followed by laccase and LiP. Lignocellulosic substrates including wheat straw, rice straw, ban...
متن کاملPreparation and Optimisation of Cross-Linked Enzyme Aggregates Using Native Isolate White Rot Fungi Trametes versicolor and Fomes fomentarius for the Decolourisation of Synthetic Dyes
The key to obtaining an optimum performance of an enzyme is often a question of devising a suitable enzyme and optimisation of conditions for its immobilization. In this study, laccases from the native isolates of white rot fungi Fomes fomentarius and/or Trametes versicolor, obtained from Czech forests, were used. From these, cross-linked enzyme aggregates (CLEA) were prepared and characterised...
متن کاملIntegration of affinity precipitation with three phase partitioning methods for bioseparation of laccase from Trametes versicolor
Separation of Trametes versicolor laccase from a commercial preparation was carried out using Three-Phase-Partitioning (TPP) technique. The conditions were optimized and the most favorable ammonium sulphate concentration (70% w/v), crude to t-butanol ratio (1.0:2.0) and pH (4.5) resulted in 56.22% yield with 1.65-fold purity of laccase. For further improvement in purification, an improved versi...
متن کاملThe immobilization of laccase enzyme from Trametes versicolor on the surface of porous zinc oxide nanoparticles and studying features of the immobilized enzyme
The laccase enzyme is the largest group of Oxidoreductase enzymes and is capable of oxidizing a wide range of organic substrates to water along with molecular oxygen resuscitation. ZnO nanoparticles are known for their specific properties such as chemical stability, high electrochemical coupling rates, and wide range of absorption of radiation as multifunctional compounds. In this study, ZnO po...
متن کامل